大気汚染とNO2濃度測定運動

2023年6月14日

大阪民医連検査部会代表者会議ミニ学習会 大阪から公害をなくす会測定研究会 西川 榮 一

大阪の大気汚染概観

- ■経済・産業
- 江戸時代「水の都」→明治~昭和期「煙の都」→(敗戦)
- →~50年代再建復興開発→(石炭から石油へ燃料革命)
- →60~70年代前半臨海埋立工業開発→(公害・石油ショック)
- →80~90年代都市開発・自動車道路開発
- →2000代~情報通信開発
- →止まらない開発成長志向

公害が重大な 社会問題

- ■戦後の大気公害・環境の推移
 - 「煙の都」再来→SOx汚染激化→SOx・NOx汚染
- →工場公害から道路公害へ→広域汚染・地球規模汚染
- →SOx · NOx · 微小粒子 · Ox · 有害化学物質汚染
- →温室効果ガス(とくにCO2)汚染が加わる

大気汚染公害と環境行政の推移

■公害環境行政の進展と後退

1967公害対策基本法

1970公害国会 公害対策基本法の改正大気汚染防止法など

一連の公害行政に関する法体系が整備された

1971環境庁設置(2001環境省)

公害環境行政····

監視 (汚染及び被害) 規制 (防止と回復) 被害補償

1973環境基準告示(SO2、CO、SPM、NO2、Ox)

1974公害健康被害補償法 (第1種;大気汚染、第2種;水俣病等)

この補償実施でSO2汚染は急速に改善された

■財界産業界などからのまき返し圧力 "公害は終わった"

1978 **NO2環境基準の緩和**

1988 第1 種指定地域 (大気汚染) 解除され新たな患者認定停止

(大阪の指定地域;大阪市、豊中、吹田、堺、守口、東大阪、八尾)

1997 環境影響評価制度

■巻き返し圧力に対する被害者運動、住民運動の広がり

訴訟運動

住民らによる環境監視運動も始まった

主な公害訴訟と中心的争点被害住民の運動

被害住民らによる公害や環境破壊に対する運動や訴訟は数多い。表に示す訴訟は、すべて被害者らが勝訴或は勝利和解にいたり、日本の公害・環境行政の進展に大きく寄与してきた

1967	新潟水俣病被害者提訴、	昭和電工 会社 の水銀汚染	1971勝訴
	四日市公害被害者提訴、	大気汚染SO2汚染、コンピナート6社の共同責任	1972勝訴
1968	イタイイタイ病患者提訴、	三井金属鉱業会社かぎウム汚染	1972勝訴
1969	熊本水俣病被害者提訴	チッソ会社の水銀汚染	1973勝訴
	大阪空港周辺住民提訴	空港騒音	75勝訴84和解
1973	関電多奈川火力発電提訴	関電多奈川火力発電による大気汚染	1984勝訴
1974	名古屋新幹線公害訴訟	国鉄新幹線 <mark>騒音</mark>	1980勝訴
1975	千葉川鉄公害提訴	大気汚染SO2·NO2	1992和解
1976	国道43号線公害提訴	自動車・道路による大気汚染、騒音	1986勝訴
1978	西淀川公害提訴	大気汚染SO2·NO2·粒子状物質SPM汚染、	91勝訴95和解
1979	川崎公害提訴	企業に加えて道路沿道汚染の国・公団の責任	1994勝訴
1983	水島大気汚染提訴	コンビナート会社共同責任大気汚染SO2、NO2	94勝訴96和解
1988	尼崎大気汚染提訴	大気汚染SO2·NO2·粒子状物質SPM、企業及	2000勝訴
	名古屋南部大気汚染提訴	び道路沿道汚染の国・公団の責任、交通差止	2000勝訴
1996	東京大気汚染提訴	自動車排ガス汚染、 自動車メーカ責任	02勝訴07和解

大気汚染公害患者による訴訟運動行政を動かすのに大きく寄与

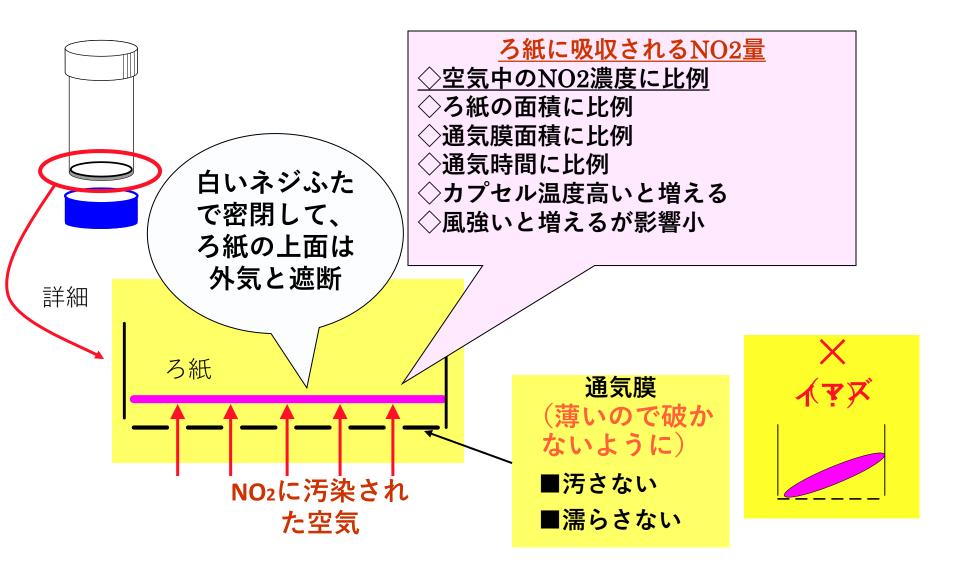
住民によるNO2測定運動の広がり

- 天谷和夫さんの開発したNO2簡易測定法が定着、 1970年中頃から普及。
- *日本では全国規模で毎年6月と12月に一斉測定
- * 外国でも使われている
- ■天谷式簡易測定法
- * 当時の公定測定法(ザルツマン法)と同じ原理
- *24時間暴露濃度なので環境基準の尺度と同じ
- *安価で簡便
- ■関西で大規模に実施された最初の運動は 1977年6月 国道43号線(阪神間の全沿道0~150m)の濃度分布を計測 (訴訟支援、住民の手による43号線排ガス汚染の実態の把握) 1978年5月 住民の手で大阪府全域でいっせい測定(第1回ソラダス)

天谷式NO2簡易測定法について 1 天谷式カプセル3型

白いネジふた 透明の円筒容器径 深さ40mm 内径15mm 円形のNO2吸収ろ紙 容器の底面は 薄い通気性の膜 青いゴムキャップ (この図ははずした状態)

絶対開けない! (上から外気が 入ったら台無しになる)

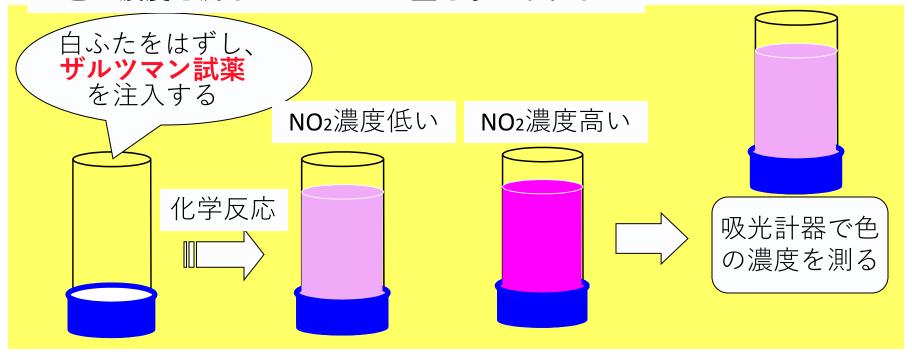

- ■トリエタノールアミンの20% 水溶液を浸み込ませてある
- ■通気膜を通って空気中のNO₂が、この液に吸収される

青いキャップをはずすと、この通気膜 を介して外気がろ紙の下面に通じる

測定の間(24時間)だけはずし、 それ以外はシッカリかぶせておく

天谷式カプセル3型のスケッチ

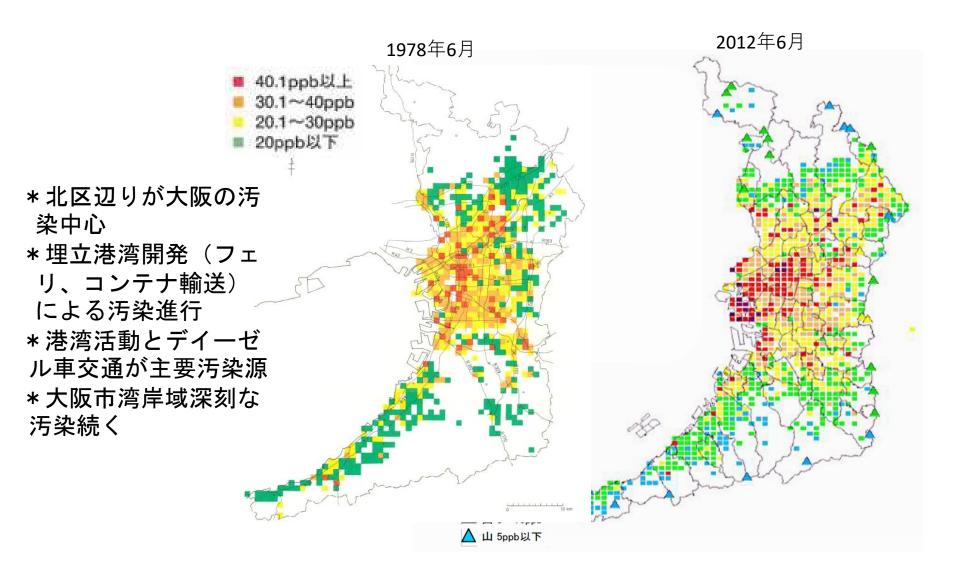
天谷式NO2簡易測定法について 2 NO2の吸収原理と注意する点



天谷式NO2簡易測定法について ろ紙に吸収されたNO2量の分析

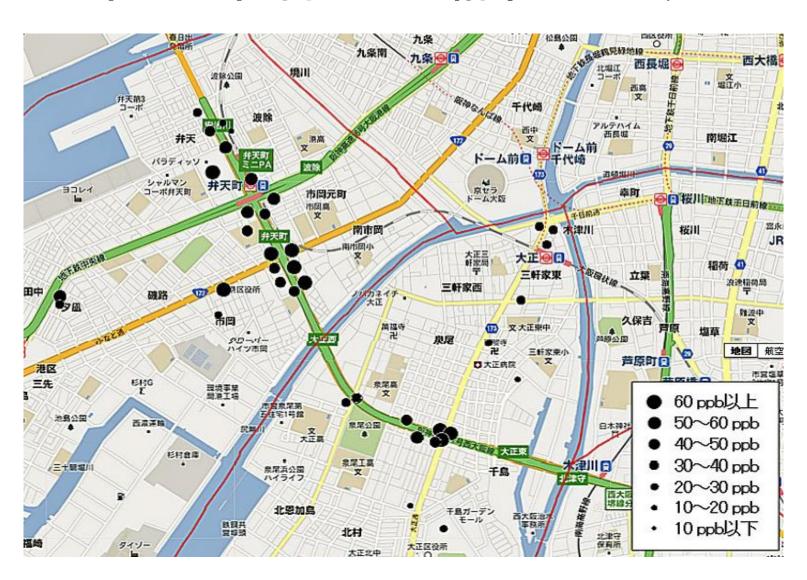
3

- ■原理(ザルツマン法)は国の指定測定法の1つ
- ■ザルツマン試薬がろ紙に吸収されたNO2と 反応して発色する
- ■色の濃度が吸収されたNO2量に比例する
- ■色の濃度を測ることでNO2の量を求められる

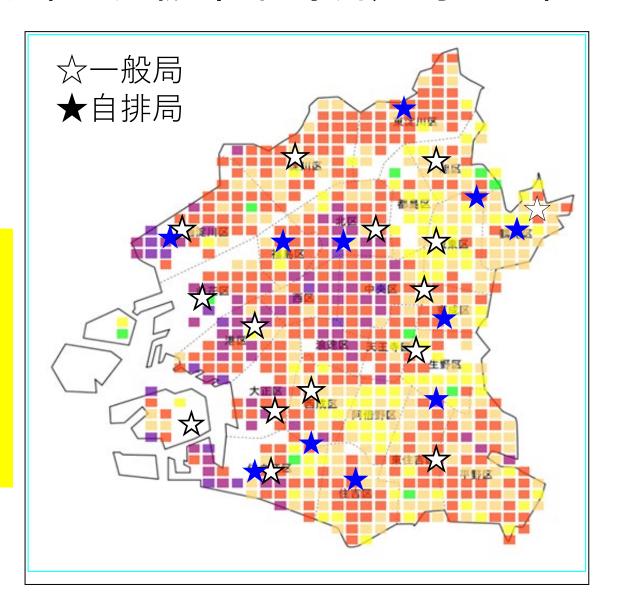

ザルツマン試薬 調合やNO2量分析 は民医連検査技 師の方々の助力 で実施

大阪でのNO2簡易測定運動

- ■1978年5月、天谷式簡易測定法を利用した最初のいっせい測定(大阪から公害をなくす会(1971年設立)による)
- *大阪全域のNO2汚染実態の把握を目指した
- *この測定運動(ソラダス運動)以後数年毎に継続 実施
- ■道路沿道など府域各地で測定運動が普及
- ■1995年、「なくす会」に公害環境測定研究会が設置され、民医連検査技師の方々の支援も得て、測定運動は今日まで続けてこられた

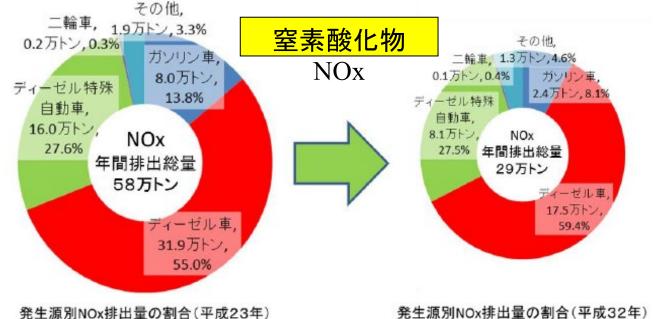

ソラダス測定結果1978と2012の比較

簡易法による住民の測定運動


- ■簡易測定法
 - ◇精度;公定測定法で検証
 - ◇NO2以外の汚染物質は簡便な方法難しい
 - (注)主要汚染源が化石燃料燃焼生成物、 NO2が汚染指標に使える
- ■簡易法の特徴
 - ◇多数の測定点で同時測定可能
 - ・詳細な濃度分布を把握
 - 汚染源の影響が把握(例:道路沿道)
 - ◇住民自身で汚染問題を知る(環境学習)

港区大正区自主測定結果マップ表示

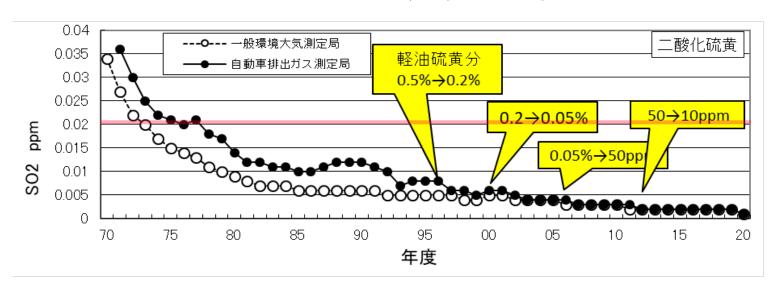
NO2濃度分布と大阪市常時測定局の配置

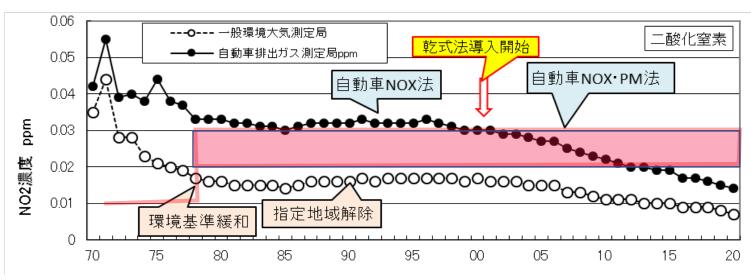

- 浪速区、港区には NO2の測定局が置か れていない
- ■大阪の現在の監視網は、高濃度スポットが的確に捉えられていない

NO2の汚染影響と特徴

- NO2自体の健康影響 現在の環境基準はこれらNO2自体の健康影響によって設定
- オゾン生成、硝酸や微小粒子の2次生成
- ◇NO2は炭化水素類と太陽紫外線とでオゾン(それ自体健康 影響、光化学スモッグ)を生成する
- ◇NO2は硝酸生成、さらに微小粒子(PM2.5)を生成
- 現在の大気汚染の指標物質的存在
- ◇NO2もPM2.5も汚染物質のほとんどは化石燃料燃焼に由来
- ◇移動発生源ではデイーゼル車、固定発生源では石炭火力な どの排出量が大きい

自動車 各車種の日本 全国における 排出量の推計 中央環境審議会 微 小粒子状物質等専 門委員会(第1回) 資料3)

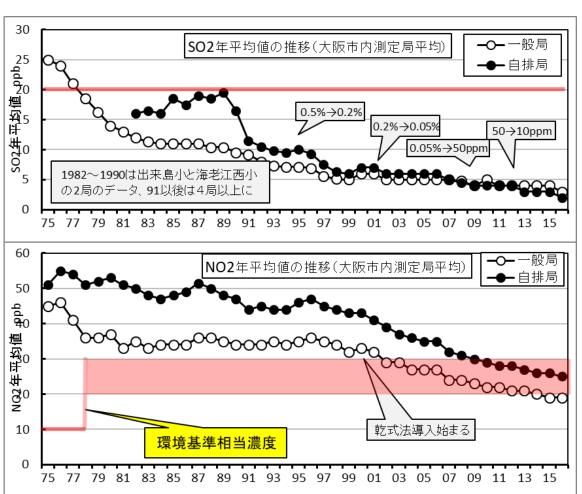

- ■PMの大部分はデ イーゼル車から排出 される
- デイーゼル車 PMのほとんどは PM2.5



発生源別PM排出量の割合(平成23年)

発生源別PM排出量の割合(平成32年)

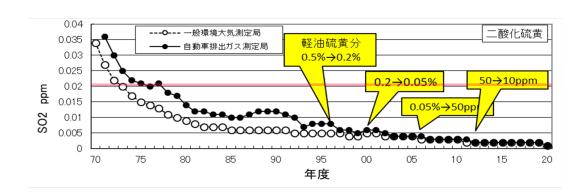
SO2およびNO2年平均濃度の推移(全国)

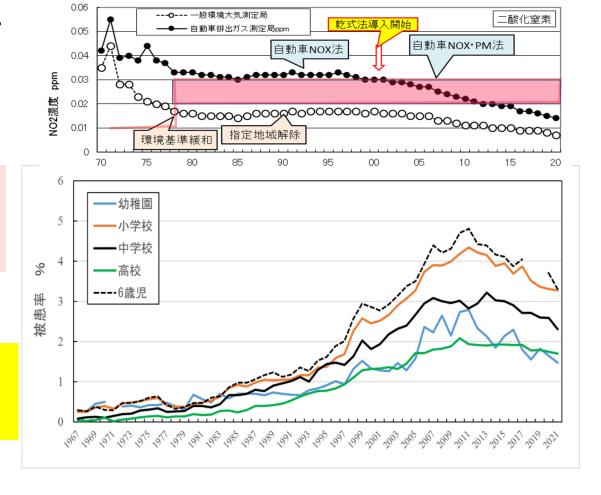

図中赤線は環境基準相当レベル、データ出所;国環研データベース

SO2およびNO2年平均濃度の推移(大阪市)

NO2年平均値ワースト10測定局(2018年度)

	1		
測定地点名	都道府県名	市区町村名	年平均值
从是他杰伯	加延州东石		ppm
南港中央公園	大阪府	住之江区	0.022
梶原	大阪府	高槻市	0.021
大田区東糀谷	東京都	大田区	0.02
大野公民館	神奈川県	平塚市	0.02
中央区晴海	東京都	中央区	0.02
九条南小学校	大阪府	西区	0.02
此花区役所	大阪府	此花区	0.02
港区台場	東京都	港区	0.02
三宝	大阪府	堺区	0.019
川崎区役所大 師分室	神奈川県	川崎区	0.019


資料出所:国環研・環境数値データベース/環境展望台



SO2およびNO2 年平均値の推移 と児童生徒のぜ ん息被患率の推 移(全国)

現行環境基準以下の 濃度でも被官率は増 え続けてきた

ぜん息被患率のデータ; 文科省学校保健 統計結果

環境基準以下の濃度でもNO2汚染が 健康影響をもたらすことを示すデータ

- ■環境庁;児童約5000人の健康状況追跡調査 (1986~90年実施)
- ■環境庁;窒素酸化物等健康影響継続観察調査報告書(1992~95年実施)
- ■環境省;自動車排出ガスと呼吸器疾患との関連に ついての研究調査(2005~09年実施)
- ■環境省;大気汚染に係る環境保健サーベイランス 調査」(1996年以降毎年実施)
- ■ソラダス運動;健康アンケート調査(2012年、16年、21年実施)
- ■WHO(世界保健機関)のクリーンな空気のための新しい指針値(2005年、21年に改正発表)

日本の環境基準と2021年WHO指針値

日本の環境基準とWHO(世界保健機関)の指針値

	日本の環境基準	WHO の指針値(注)	
	1978 年設定 PM2.5 は 2009 年	2005 年設定	2021 年の新指針値
SO2 ppb	日平均 98%値;40 1 時間値;100	日平均値;7 10 分平均値;175	日平均 99%値;14 10 分平均値;175
NO2 ppb	日平均 98%値; 40~60	年平均値;20 1時間平均値;102	年平均値; 5 日平均 99%値;12 1 時間平均値;50
PM10 μg/m³	(日本 SPM) 日平均値;100	年平均値 20、 日平均値 50	年平均値 15、 日平均値 45
PM2.5 μg/m3	年平均値 15、 日平均値 35	年平均値 10 日平均 99%値 25	年平均値 5 日平均 99% 15
O3 ppb	(日本 Ox) 1時間値;60 以下	8時間平均値 47	Peak season 28 注 2) 8 時間平均 99%値 47

(注 1)WHO は SO2、NO2、Ox も質量濃度 $\mu g/m3$ で表示しているが、本表では体積濃度 ppb に換算した値を示した

(注2)連続6か月平均濃度が最高のシーズンにおける日毎8時間平均最高値

9月7日 青い空のためのクリーン エア国際デー International Day of Clean Air for blue skies 2019年国連総会で決定

国連は大気汚染対策に非常に力を入れている

- ■世界の99%は汚染された空気に覆われ、毎年700万人の早期死亡被害(注;屋外大気汚染と屋内空気汚染の
- ■大気汚染は人の健康に影響を及ぼす環境リスク。気候、 生物多様性、生態系にも悪影響を与えてきている
- ■大気の改善は健康、そして開発、環境全体の改善をもたらす
- ■政府、企業、市民社会、個人、すべてに呼びかける 大気汚染を減らし、私たちが共有する空気を変革する ために、行動を起こすように

大気汚染問題の状況

- ■大気汚染状況汚染や対策の現状
- * 大気汚染の原因物質のほとんどは化石燃料の燃焼利用 CO2、粉じん、SOx、NOx、微小粒子状物質(PM2.5)、 水銀、ベンゼン、ダイオキシンなどなど
- *大きな排出源のディーゼル車や石炭火力の延命策
- ■環境行政の停滞・怠慢
- *NO2環境基準の見直しや汚染改善対策の遅れ
- *PM2.5対策・・・・対策手つかず、環境アセスの対象外 (特定の排出源による汚染というより、文明の発 展に伴う全域的汚染だ??)
- ■この状況が続く限りNO2測定による大気環境監視は必要

大気汚染・CO2問題から見た課題

- ■目指すべき対策手段の方向
- * 大気汚染の主原因は化石燃料の燃焼利用 産業革命期から化石燃料依存の熱機関方式からの脱却 大気汚染・CO2汚染の同時解決につながる
- *動力・エネルギ体系の根本転換
- * 化石燃料や核燃料→再生可能エネルギー
- ■対策をどう進めるか
- *被害者、住民の運動なくして環境行政は進まない
- *住民市民の手でデータを把握して社会化してゆくソラダス運動もその1つ

簡易法による住民の測定運動

- ■簡易測定法
 - ◇精度;公定測定法で検証
 - ◇NO2以外の汚染物質は簡便な方法難しい

(注)主要汚染源が化石燃料燃焼生成物、

NO2が汚染指標に使える

- ■簡易法の特徴
 - ◇多数の測定点で同時測定可能
 - 詳細な濃度分布を把握
 - 汚染源の影響が把握(例;道路沿道)
 - ◇住民自身で汚染問題を知る (環境学習)

民医連とりわけ検査技師の方々の専門的支援を頂いて、測定運動を今後も続けていきたい

おわり